欢迎来到讯壹目录!
讯壹目录 | 帝明博客当前位置:讯壹目录 » 站长资讯 » 站长资讯 » 文章详细 订阅RssFeed

MySQL · 性能优化 · MySQL常见SQL错误用法

来源:阿里云数据库 浏览:373次 时间:2022-05-22


前言

MySQL在2016年仍然保持强劲的数据库流行度增长趋势。越来越多的客户将自己的应用建立在MySQL数据库之上,甚至是从Oracle迁移到MySQL上来。但也存在部分客户在使用MySQL数据库的过程中遇到一些比如响应时间慢,CPU打满等情况。阿里云RDS专家服务团队帮助云上客户解决过很多紧急问题。现将《ApsaraDB专家诊断报告》中出现的部分常见SQL问题总结如下,供大家参考。

常见SQL错误用法

1. LIMIT 语句

分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般DBA想到的办法是在type, name, create_time字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。

SELECT * FROM operation 
WHERE  type = 'SQLStats' AND name = 'SlowLog' ORDER  BY create_time 
LIMIT  1000, 10;

好吧,可能90%以上的DBA解决该问题就到此为止。但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?

要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL重新设计如下:

SELECT   * FROM operation 
WHERE  type = 'SQLStats' AND name = 'SlowLog' AND create_time > '2017-03-16 14:00:00' 
ORDER BY create_time limit 10;

在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。

2. 隐式转换

SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:

mysql> explain extended SELECT * 
     > FROM my_balance b 
     > WHERE b.bpn = 14000000123 > AND b.isverified IS NULL ;
mysql> show warnings;
| Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation 
conversion on field 'bpn' 

其中字段bpn的定义为varchar(20),MySQL的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。

上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。

3. 关联更新、删除

虽然MySQL5.6引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成JOIN。

比如下面UPDATE语句,MySQL实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。

UPDATE operation o SET status = 'applying' WHERE o.id IN (SELECT id FROM (SELECT 
o.id,o.status FROM operation o WHERE o.group = 123 AND o.status 
NOT IN ( 'done' ) ORDER BY o.parent,o.id LIMIT 1) t);

执行计划:

+----+--------------------+-------+-------+---------------+---------+---------+-------+
---
---+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+-------+-------+---------------+---------+---------+-------+
---
---+-----------------------------------------------------+
| 1 | PRIMARY | o | index | | PRIMARY | 8 | | 24 | Using where; Using temporary |
| 2 | DEPENDENT SUBQUERY | | | | | | | | Impossible WHERE noticed after reading const 
tables |
| 3 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using 
filesort |
+----+--------------------+-------+-------+---------------+---------+---------+-----
--+---
---+-----------------------------------------------------+

重写为JOIN之后,子查询的选择模式从DEPENDENT SUBQUERY变成DERIVED,执行速度大大加快,从7秒降低到2毫秒。

UPDATE operation o JOIN (SELECT o.id, 
                            o.status FROM operation o WHERE o.group = 123 AND 
o.status NOT 
IN ( 'done' ) ORDER BY o.parent, 
                               o.id LIMIT 1) t ON o.id = t.id SET status 
= 'applying' 

执行计划简化为:

+----+-------------+-------+------+---------------+-------+---------+-------+------
+------
-----------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | 
Extra |
+----+-------------+-------+------+---------------+-------+---------+-------+-----
-+-----
------------------------------------------------+
| 1 | PRIMARY | | | | | | | | Impossible WHERE noticed after reading const 
tables |
| 2 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; 
Using filesort |
+----+-------------+-------+------+---------------+-------+---------+-------+--
----+-----
------------------------------------------------+

4. 混合排序

MySQL不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。

SELECT * FROM my_order o INNER JOIN my_appraise a ON a.orderid = o.id ORDER BY 
a.is_reply ASC, 
          a.appraise_time DESC LIMIT 0, 20 

执行计划显示为全表扫描:

+----+-------------+-------+--------+-------------+---------+---------+--------
-------+------
---+-+
| id | select_type | table | type  | possible_keys     | key     | key_len 
| ref      | rows    | Extra    
+----+-------------+-------+--------+-------------+---------+---------+--------
-------+------
---+-+
|  1 | SIMPLE  | a     | ALL    | idx_orderid | NULL | NULL | NULL | 1967647 
| Using filesort
 |
|  1 | SIMPLE  | o     | eq_ref | PRIMARY     | PRIMARY | 122     | a.orderid 
|       1 | 
NULL |
+----+-------------+-------+--------+---------+---------+---------+------------
-----+------
---+-+

由于is_reply只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。

SELECT * FROM ((SELECT * FROM my_order o INNER JOIN my_appraise a ON 
a.orderid = o.id AND 
is_reply = 0 ORDER BY 
appraise_time DESC LIMIT 0, 20) UNION ALL (SELECT * FROM my_order o 
INNER JOIN my_appraise 
a ON a.orderid = o.id AND is_reply = 1 ORDER BY appraise_time DESC 
LIMIT 0, 20)) t ORDER BY is_reply ASC, 
appraisetime DESC LIMIT 20;

5. EXISTS语句

MySQL对待EXISTS子句时,仍然采用嵌套子查询的执行方式。如下面的SQL语句:

SELECT * FROM my_neighbor n LEFT JOIN my_neighbor_apply sra ON n.id = 
sra.neighbor_id AND 
sra.user_id = 'xxx' WHERE 
n.topic_status < 4 AND EXISTS(SELECT 1 FROM message_info m WHERE n.id = 
m.neighbor_id AND 
m.inuser = 'xxx') AND n.topic_type <> 5 

执行计划为:

+----+--------------------+-------+------+-----+-------------------------
------------------
--------+-------+---------+ -----+
| id | select_type | table | type | possible_keys | key | key_len | ref 
| rows | Extra |
+----+--------------------+-------+------+ -----+-------------------------
----------------
----------+-------+---------+ -----+
| 1 | PRIMARY | n | ALL | | NULL | NULL | NULL | 1086041 | Using where |
| 1 | PRIMARY | sra | ref | | idx_user_id | 123 | const | 1 | Using where |
| 2 | DEPENDENT SUBQUERY | m | ref | | idx_message_info | 122 | const | 1 
| Using index condition; Using where |
+----+--------------------+-------+------+ -----+-------------------------
----------------
-+---------+-------+---------+ -----+

去掉exists更改为join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。

SELECT * FROM my_neighbor n INNER JOIN message_info m ON n.id = m.neighbor_id 
AND m.inuser 
= 'xxx' LEFT JOIN my_neighbor_apply 
sra ON n.id = sra.neighbor_id AND sra.user_id = 'xxx' WHERE n.topic_status 
< 4 AND n.
topic_type <> 5 

新的执行计划:

+----+-------------+-------+--------+ -----+-------------------------------
-----------+-
--------+ -----+------+ -----+
| id | select_type | table | type | possible_keys | key | key_len | ref 
| rows | Extra |
+----+-------------+-------+--------+ -----+------------------------------
------------+-
--------+ -----+------+ -----+
| 1 | SIMPLE | m | ref | | idx_message_info | 122 | const | 1 
| Using index condition |
| 1 | SIMPLE | n | eq_ref | | PRIMARY | 122 | ighbor_id | 1 | Using where |
| 1 | SIMPLE | sra | ref | | idx_user_id | 123 | const | 1 | Using where |
+----+-------------+-------+--------+ -----+-------------------------------
-----------+
---------+ -----+------+ -----+

6. 条件下推

外部查询条件不能够下推到复杂的视图或子查询的情况有:

  1. 聚合子查询;
  2. 含有LIMIT的子查询;
  3. UNION 或UNION ALL子查询;
  4. 输出字段中的子查询;

如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:

SELECT * FROM (SELECT target, 
               Count(*) FROM operation  GROUP  BY target) t 
WHERE  target = 'rm-xxxx' 
+----+-------------+------------+-------+---------------+-------------+------
---+-------+
------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref 
| rows | Extra |
+----+-------------+------------+-------+---------------+-------------+---
------+-------+
------+-------------+
| 1 | PRIMARY | | ref | | | 514 | const | 2 | Using where |
| 2 | DERIVED | operation | index | idx_4 | idx_4 | 519 | NULL | 20 
| Using index |
+----+-------------+------------+-------+---------------+-------------+-
--------+-------+
------+-------------+

确定从语义上查询条件可以直接下推后,重写如下:

SELECT target, 
       Count(*) FROM operation 
WHERE  target = 'rm-xxxx'  GROUP  BY target

执行计划变为:

+----+-------------+-----------+------+---------------+-------+---------+-
------+------+--
------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref 
| rows | Extra |
+----+-------------+-----------+------+---------------+-------+--------
-+-------+------+--
------------------+
| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | 
Using where; Using index |
+----+-------------+-----------+------+---------------+-------+------
---+-------+------+-
-------------------+

关于MySQL外部条件不能下推的详细解释说明请参考以前文章:MySQL · 性能优化 · 条件下推到物化表

7. 提前缩小范围

先上初始SQL语句:

SELECT * FROM my_order o LEFT JOIN my_userinfo u ON o.uid = u.uid LEFT JOIN 
my_productinfo 
p ON o.pid = p.pid WHERE ( o.display = 0 ) AND ( o.ostaus = 1 ) ORDER BY 
o.selltime DESC LIMIT 
0, 15 

该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。

+----+-------------+-------+--------+---------------+---------+---------+-
----------------+
--------+----------------------------------------------------+
| id | select_type | table | type  | possible_keys | key     | key_len | ref
             | 
rows   | Extra                                              |
+----+-------------+-------+--------+---------------+---------+---------+-
----------------+
--------+----------------------------------------------------+
|  1 | SIMPLE  | o     | ALL    | NULL | NULL | NULL | NULL | 909119 | 
Using where; Using 
temporary; Using filesort       |
|  1 | SIMPLE  | u     | eq_ref | PRIMARY       | PRIMARY | 4       | 
o.uid |      1 | NULL |
|  1 | SIMPLE  | p     | ALL    | PRIMARY       | NULL | NULL | NULL 
|      6 | Using where; 
Using join buffer (Block Nested Loop) |
+----+-------------+-------+--------+---------------+---------+--------
-+-----------------+
--------+----------------------------------------------------+

由于最后WHERE条件以及排序均针对最左主表,因此可以先对my_order排序提前缩小数据量再做左连接。SQL重写后如下,执行时间缩小为1毫秒左右。

SELECT * FROM ( SELECT * FROM my_order o WHERE ( o.display = 0 ) AND 
( o.ostaus = 1 ) ORDER BY 
o.selltime DESC LIMIT 0, 15 ) 
o LEFT JOIN my_userinfo u ON o.uid = u.uid LEFT JOIN my_productinfo p 
ON o.pid = p.pid ORDER 
BY o.selltime DESC limit 0, 15 

再检查执行计划:子查询物化后(select_type=DERIVED)参与JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及LIMIT 子句后,实际执行时间变得很小。

+----+-------------+------------+--------+---------------+---------+--
-------+-------+------
--+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | 
ref | rows | Extra |
+----+-------------+------------+--------+---------------+---------+--
-------+-------+------
--+----------------------------------------------------+
| 1 | PRIMARY | | ALL | NULL | NULL | NULL | NULL | 15 | Using temporary; 
Using filesort |
| 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
| 1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; 
Using join buffer 
(Block Nested Loop) |
| 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using 
where |
+----+-------------+------------+--------+---------------+---------+---
------+-------+-----
---+----------------------------------------------------+

8. 中间结果集下推

再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):

SELECT a.*, 
          c.allocated FROM ( SELECT resourceid FROM my_distribute d WHERE 
isdelete = 0 AND 
cusmanagercode = '1234567' ORDER BY salecode limit 20) a LEFT JOIN 
( SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) 
allocated FROM my_resources GROUP BY resourcesid) c ON a.resourceid = 
c.resourcesid

那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。

其实对于子查询 c,左连接最后结果集只关心能和主表resourceid能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。

SELECT a.*, 
          c.allocated FROM ( SELECT resourceid FROM my_distribute d WHERE 
isdelete = 0 AND 
cusmanagercode = '1234567' ORDER BY salecode limit 20) a LEFT JOIN 
( SELECT resourcesid, 
sum(ifnull(allocation, 0) * 12345) allocated FROM my_resources r, 
( SELECT resourceid FROM 
my_distribute d WHERE isdelete = 0 AND cusmanagercode = '1234567' 
ORDER BY salecode limit 20) a WHERE r.resourcesid = a.resourcesid GROUP BY resourcesid) c ON 
a.resourceid = c.resourcesid

但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用WITH语句再次重写:

WITH a AS ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 
AND cusmanagercode 
= '1234567' ORDER BY salecode limit 20) SELECT a.*, c.allocated FROM a 
LEFT JOIN ( SELECT 
resourcesid, sum(ifnull(allocation, 0) * 12345) allocated FROM 
my_resources r, a WHERE 
r.resourcesid = a.resourcesid GROUP BY resourcesid) c ON a.resourceid
 = c.resourcesid

AliSQL即将推出WITH语法,敬请期待。

总结

  1. 数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。
  2. 程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。
  3. 编写复杂SQL语句要养成使用WITH语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 ^^。
  4. 使用云上数据库遇到难点(不局限于SQL问题),随时寻求阿里云原厂专家服务的帮助。



推荐站点

  • 怪兽AI数字人怪兽AI数字人

    怪兽AI数字人为怪兽智能科技推出的产品,包含全息交互数字人、3D超写实交互数字人,AIGC生产、SaaS管理和直播服务平台。创始团队来自怪兽智能大数据平台,在互联网、物联网、智能软硬件等领域积累了丰富的行业经验,致力于打造全球领先的AIGC数字人智能平台。通过真人形象克隆、真人声音克隆、孪生姿态合成、唇形同步驱动、实时视频渲染、多素材集成人工智能等核心技术及模块式交付SAAS及应用软件系统,帮助客户实现数字人的短视频内容生产创作及直播宣传。怪兽AI为品牌商家及本地生活商家提供数字人克隆、数字人短视频生成、数字人直播解决方案、3D超写实全息交互屏及数字人交互解决方案。

    怪兽AI数字人
  • 链站网链站网

    链站网是一个中文目录网站,专注于提供网站分类目录平台,收录各类型各行业优秀网站,为用户提供便利的网站分类目录检索、优秀网站参考和免费提交收录,旨在快速提升网站流量。

    链站网
  • 讯壹工具网讯壹工具网

    讯壹工具网为您提供json格式化,json代码压缩,json校验解析,json数组解析,json转xml,xml转json,json解析,json在线解析,json在线解析及格式化,unix时间戳转换,CSS美化压缩,json美化,json格式化输出,json数组,json实体类,json视图等

    讯壹工具网
  • 帝明博客帝明博客

    分享既生活!

    帝明博客
  • 讯壹Whois讯壹Whois

    讯壹全球域名Whois系统支持1000多种域名后缀查询,是速度最快的域名whois系统。

    讯壹Whois